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A recursion procedure for the analytical generation of hyperspherical harmonics for triatomic systems, in
terms of row-orthonormal hyperspherical coordinates, is presented. Using this approach and an algebraic
Mathematicgorogram, these harmonics were obtained for all values of the hyperangular momentum quantum
number up to 40 (about 2.3 million of them). Their properties are presented and discussed. Since they are
regular at the poles of the triatomic kinetic energy operator, are complete, and are not highly oscillatory, they
constitute an excellent basis set for calculating the local hyperspherical surface functions in the strong interaction
region of nuclear configuration space. This basis set is, in addition, numerically very efficient and should
permit benchmark-quality calculations of state-to-state differential and integral cross sections for those systems.

1. Introduction somewhat different approach, based on the general theory of
Substantial progress has been made recently in applyingharmonic polynomiald* To perform converged state-to-state
qguantum reactive scattering theory to atediatom reactions. differential reactive scattering calculations for triatomic systems
Several totally ab initio quantum-dynamical calculations of using these hyperspherical harmonics, a sufficiently large and
converged state-to-state integral and differential cross sectionscomplete set of such functions must be used, involving both

have been performed using a propagation approach to solve théhe grand-canonical angular momentum quantum numbed
time-independent Schdinger equation. Most of these calcula- the total angular momentum quantum numiefheJ = 0 and

tions have been done with some form of symmetrized body- J = 1 harmonics are nondegenerate. The first degenerate
fixed hyperspherical coordinafed? which have the desirable  hyperspherical harmonics appear for= 2 andn = 4, and the
property that a single set of such coordinates span the potentialdegeneracy increases with both of theses quantum numbers. For
energy surface in all arrangement channels “democratically” a contributingd andn, all these degenerate functions are needed
(i.e., equivalently}3-15 This property has been instrumental in  to obtain such converged results.

the success of such an approach. Hyperspherical harmonics have been used to calculate energy
We consider in this paper the body-fixed row-orthonormal levels of few-body systems, including nuékei® and atomg’
hyperspherical coordinates (ROHC) proposed previotfsSine Their use in scattering problems, especially those involving

Hamilitonian in these coordinates is quite simple, and each of contributions from highl partial waves, has been more limited.
its terms displays useful invariance properties under kinematic The reason is 2-fold. One is the difficulty in their determination
rotations and symmetry operations. However, as for angular for large values o8, but this is overcome using the approaches
coordinates in general, the corresponding kinetic energy operatordescribed in ref 23 and in the present paper. It should be noticed
has poles for two special configurations of the system. One pole that hyperspherical harmonics are appropriate for describing the
occurs for collinear geometries and can be dealt with analytically strong interaction regions of configuration space encompassed
using a simple set of basis functions which behave regularly at by the full ranges of definition of the hyperangles. The second
that pole! A second pole occurs for bent configurations of the reason is that, for the arrangement channel regions involving
system. For collinearly-dominated triatomic reactions, these bentseparated collision partners (the weak interaction regions), they
configurations are usually classically forbidden at the energies constitute an inefficient basis set, since these parts of config-
of interest and do not require special consideration. However, uration space are spanned by a small range of the hyperangles.
for higher energies or for noncollinearly-dominated triatomic This difficulty is overcome by using more appropriate coordi-
reactions, this noncollinear pole must be handled appropriately. nates and basis sets in such regibfis.
One possible approach is to expand the three-body wave Recently, we reported a recursion procedure for the analytical
function in a basis set of hyperspherical harmonics. These generation of hyperspherical harmonics for tetraatomic sys-
harmonics are eigenfunctions of the square of the grand-tems?28In the present paper we describe an analogous efficient
canonical angular momentum operator, have the same angularecursive method to generate, for triatomic systems, analytical
poles as the kinetic energy operator, and behave regularly athyperspherical harmonics in the principal-axes-of-inertia frame
those poles. Several approaches for their calculation have beemwhich are simultaneous eigenfunctions of the operadpr
used!’~23 However, their complete analytical determination has (associated with the inversion | of the system through its center
not been possible until now. One of the metiiddemes close of mass) and of the four angular momentum operatdsJ2,
to reaching this objective and involves a numerical implementa- jif, and L. A2 is the grand-canonical angular momentum
tion of an iterative procedure. The present paper describes aoperator,flz is the square of the total angular momentum

T Part of the special issue “Donald J. Kouri Festschrift”. pperator, Jif is its space-fixedz component, and‘ IS a.n

*To whom correspondence should be sent. E-mail address: aron@ internal hyperangular momentum operator associated with one
caltech.edu. of the internal hyperangles. In section 2 we describe these
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operators in greater detail and summarize the ROHC used andThe hyperanglé is related to system’s principal moments of
the corresponding Hamiltonidfi,and in section 3 we define inertia by
the associated hyperspherical harmonics. In section 4 we derive

the recursion relations used to generate these harmonics, and I, = up®N3; = up’ cos 0 (2.11)
in section 5 their degeneracies are analyzed. Some representative
results are presented in section 6 and discussed in section 7. I = uo? (2.12)
Finally, a summary and conclusions are given in section 8. 2= Mp :

— 2812 — 2 i
2. Coordinates and Kinetic Energy Operator |3 = up’Ng; = = upsir’ 0 (2.13)

The ROHC used in this paper, as well as their properties,
have been described previoushand we only summarize them

below. We consider a system of three bodies in a space-fixed

frameOxlys' whose mass-scalédarrangement channel Jacobi

vectors arer!), i = 1, 2. The corresponding Jacobi matrix is
defined as
X2 XD
A Vi (2.1)
z0 2
The six ROHC
7, =(p, ©)) (2.2)
0;,=(0;, 0,9)) (2.3)
are defined by the relation
P = R(@;) PN(6) Q(6,) (2.4)

In this expressiong;, = (a;, b, ¢;) are the Euler angles that
rotate the space-fixed fran@x<'y;'z" into the principal-axes-
of-inertia body-fixed fram@x1y':Z.. The quantityp is the usual
hyperradius which, together with the two internal hyperangles
0, 96,, determines the internal configuration of the system. The
R in (2.4) is the proper 3« 3 rotation matrix associated with
that rotation, andN(#) is a 3 x 3 diagonal matrix whose
diagonal elements are

N,, =sin@ N,,=0 N3 =cosf (2.5)

Finally, Q(9,) is the 3x 2 row-orthogonal matrix

cosd, sino,
Q(d,) ==10 0 (2.6)
—sind, cosd,

The Euler anglesy, have the usual ranges of definition

O0<a, ¢, <21, 0<b, ==z (2.7)
To get a one-to-one correspondence betw;e}%rand the six
ROHC (except for some special geometries), we limit the range

of thed, to

0<9,<m (2.8)
and that ofé to
0<6=<a/4 (2.9)
The latter results in
N,o < Njj < Ngg (2.10)

and, as a result of (2.10), they are ordered according to

lb=1,=21;=0 (2.14)
In terms of these ROHC, the kinetic energy operator is given
by

/\2

2

R YA
' P)

whereV2is the system’s mass-scaled six-dimensional Laplacian,
AZ is the hyperangular momentum operator

T= (2.15)

1 42 1 1 2 1

~2 1 31,2 Al (2
A2= +——3% 4 2+
cod0 * cof0 ’ st °  cod20
K2+ 23D 150 _ gis cot 4K (2.16)
co< 20

'i'p(p) is the hyperradial kinetic energy operator

% —ﬁi

K ey (2.18)
and

[ —ﬁi

L= 90, (2.19)

The J}/, 37, andJ} operators in (2.16) are the components
of the nuclear motion angular momentum operdtor the body-
fixed frameOx:yiZ: and are given explicitly by

3 —csch, cosc, sinc; cotb, cosc, |[d/da,
A h . .
;A == csch, sinc,  cosc, —cotb, sinc, || 9/db;
3 0 0 1 alac;
(2.20)

Under al to v change of Jacobi coordinates, the Jacobi matrix
pjf changes according to the kinematic rotation
f f
Py = piN,, (2.21)
whereN;, is a 2x 2 proper orthogonal square matAx* whose
elements depend only on the masses of the atoms. The
coordinatep and@ are kinematic-rotation-invariant, as are the

operatorsT,(p), A2 K, andL. On the other handR(a;), Q(97),
andJ": transform according to
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R(a,) =1y, R(&) (2.22)
QW) =N, Q0 1y, (2.23)
= |ni’j'* (2.24)
where
(-1)™ 0 0
I, =0 10 (2.25)
"o 0 (—1)™

The quantityn;, is either 0 or 1 and depends én As a result,
J+is invariant wheread): andJ} either are invariant or both

Wang and Kuppermann

JERImL, 80, = MFI s, @) (35)
I:FH Ny L ‘|3/|J 5)(@/) — LhFH L "LIJ 5(@/1) (36)
OF™I, 80, = (CIFT™, ey (.7)

TheseF functions are furthermore required to be regular at the
poles ofAZ (see (2.16)). The quantum numbexg J, My, L,
andIT appearing in these expression are all integers, satisfying
the constraints

change signs under kinematic rotations. Furthermore, the axes

of the principal-axes-of-inertia fram®x.y".z: are invariant
under such rotations, as is the sens®yf, whereas either none

np=0 0=<J=ny (3.8)
—-J=M;=1] —Ng =Ly =ng (3.9)
m=0,1 (3.10)

or both of the senses of the two other axes change. An important3d: @ shown Appendix B andLn have the same parity as

consequence of these properties is that each one of the seve

terms in (2.16) as well as tﬁE,(p) of (2.17) are invariant under
kinematic rotations.

The grand-canonical hyperangular momentum operator of

(1" = (1" =(-1)" (3.11)

The five operators being considered are all independent of

(2.16), and therefore the kinetic energy operator of (2.15), has the choice of arrangement channel coordinatand therefore,

singularities at collinear configurations, corresponding te
0, and at configurations for which the two principal moments
of inertial, andl3 are equal, corresponding &= z/4, which
is a prolate symmetric top configuration. The collinear config-
uration pole can be taken care of by a simple choicé bésis
functions! For many collinearly-dominated triatomic systems,

so are the corresponding quantum numtérs, J, M;, and

L. The positive integer superscrift is used to label the
number of linearly-independert functions having the same
values of these five quantum numbers. Thidegeneracy stems
from the fact that the system of three free particles in a center
of mass frame has five angular degrees of freedom, as indicated

the symmetric top singularity corresponds to high energy regions by (2.3) (and as a result has five simultaneously knowable
of the potential energy surface and does not pose specialangular constants of the motion), Hehas been required to be
problems at low energies. However, for non-collinearly- a5 eigenfunction of only four differential operators in these
dominated triatomic systems, this singularity is, in general, not angular variables. It is shown in section 6.2 tBatlepends on
located in such regions and can result in convergence difficulties e guantum numbers J, andL (but not onM;). The positive

for the most common quadrature or basis set expansion methodsnteger subscripd, which ranges from 1 t®, designates which
including DVR methods, even for low energies. In the present gne of theF functions is being considered.

paper, we develop a set of analytical basis functions which

overcome these problems, both at low and high energies.

3. Hyperspherical Functions and
Principal-Axes-of-Inertia Hyperspherical Harmonics

_ For triatomic systems, the five operatord, 32 J3, L, and
O commute with each othet.is the operator which inverts
the system through its center of mass

io5' = —p3' (3.1)

As a result of (3.3) through (3.7), the general solution of those
equations can be written as

g, 6, =

J
NH nnJdLn e| Lo, Z D‘KAJQJl(aA) GH N Lp ‘nglg(e) (312)
Qy,=—J

The presence of the Wigner rotation functiobﬁ,IJQJ (a)®®
Z8

guarantees that (3.12) will satisfy (3.3) through (3.6). As shown
in Appendix A, replacement into (3.3) results in a set of partial
differential equations for the functiord which do not contain

and & is the associated operator which acts as a function of M;, and therefore, th& are independent of these quantum

pjf. As has been shown previously, acts on the ROHC of

(2.2) and (2.3) according to

1(a,,b;,c;,0,0,0,) =
((r + &) mod 27,7 — b,,(r — ¢;) mod 27,0,6,6,) (3.2)

Therefore, bothp and 6 are unchanged under inversion. Let

Fiimtng, 4(0) be the simultaneous eigenfunctions of those
five operators:
AZRIIE S () = np(ny + AR%FI M 2(0)) (3.3)

FEMontn J 2(©®) = JJ + 1p?Fmtn ﬁ,,J 20, (3.4)

numbers. This independence is a consequence of the fact that
AZis invariant under both space and kinematic rotations. The
degeneracy(nn,J,L) also represents the number of linearly-
independent sets of function€" ™"}, D with each set

9,
spanned by the quantum numbe®s,, as discussed in sec-
tion 6.2. TheN on the rhs of (3.12) is a normalization constant
that will be discussed in section 6 and is shown to be
independent oM.

According to (3.7), the functions™ "), 2(9) for IT = 0
andIl = 1 are respectively symmetric andJantisymmetric with
respect to inversion through the system'’s center of mass. If we
restrict ourselves to single electronically-adiabatic states of the
triatomic system being considered, the potential energy function
V(p,0,0,) which describes the interaction between those atoms
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is invariant (i.e., symmetric) under such inversion, and matrix potential energy function. It should also be noted that if some
elements oV betweenF functions of different parity vanish.  of the system’s atoms are equal, it is possible to define modified

The range of thé; angle is given by (2.8). However, thé€: F functions that transform according to the irreducible repre-
functions are only orthonormal over the range sentationd” of the permutation group of identical atoms. This
will entail a modification of the &n®: functions in (3.12), but
0<9;,<2n (3.13) not of the associate6 functions.

Theref itis desirabl ) 1 b id h To solve (3.3) through (3.7), an alternative to the expansion
extended ange. This can b6 accompiished by notcing tha theC(3-12) 1 10 use, nstead of i, (@), i, (@) pariy,
) Wigner rotation functions defined by

two sets of ROHC
—xJIT _ ~JQ J JHT14+Q5, ~ J
@] Mj%(ai) =_AN"[D MJQJl(aE) + (—1) 7D MJQ%(a,l)]

i = (0.©,) i=0,1 (3.14) (3.18)
defined by where
@,10 = (a;,b,,c;,0,0,) (3.15) 2 2J+1 1/2 (3.19)
167°(1 + 0 0)
and *
®, = ((x + &) mod 217 — by, (7 — ¢;) mod 2r, The @ﬂ,ﬂ%(a,l) is orthonormal with respect to all its four
1 indices and transforms under inversion as
0,(r + 6,) mod 2r) (3.16) .
O @) =)D, (@) (3.20)
2%, )

with thed; in the ranges defined by (3.13), yield the same Jacobi
matrix of (2.1), that is, correspond to the same configuration of (3 12) is then replaced by
the system. As a result, the system’s wave function, in the

absence of a conical intersection between the electronically- g Lnfw 5’(@) =
adiabatic potential energy function being considered and a ’
neighboring one (i.e., in the absence of a geometric phase NG
effec€?, should have the same value at these two sets of ROHC.

We therefore impose the same condition on (3.12). Replacement

:); Egélzlgtri\gn(s.le) into (3.12) and use of this condition leads Using the properties of thé),JngJ;(aa) and Wﬁ,.rjg%(aa) func-

tions, the following relations result:

J
€ N Ui, @) G, 9(0) (3.21)

o5=0

GH nr L J o, dD(G) — (_1)(J+L+QJ,)GH N L ngi 3(0) (3_17) G'H ni Lo 2231 5(6) — (1 + 5QJ10)—1/ZGH nmo Lo 22% 5(9)

for Q; =0 (3.22)
Since theG are independent od,, this relation should be ’
imposed regardless of whether the ranges defined by (2.8) or P 23+ 1172 gL
(3.13) are being considered, and therefore, (3.12) is valid in N = [—2] NT (3.23)
either of these two ranges. It should be stressed, however, that 167
(3.17) is valid only in the absence of a geometric phase. If such Therefore, forQ;, > 0, G' andG are equal, but they differ by
a phase is present, a different approach is required, anl the g factor of 14/2 for Qj, = 0. In addition, the replacement of
andG of this paper are not applicable. TRefunctions given D}, o (a) by i, (ay) in (3.12) limits the sum ovef2;, to
by (3.12) are called five-angle principal-axes-of-inertia hyper- o0 feqative values only and changes the normalization con-
spherical harmonics, and ti&functions in those equations are

stant.
called principal-axes-of-inertia hyperspherical harmonics, or
simply F hyperspherical harmonics or functions a@cyper- 4. Analytical Derivation of Principal-Axes-of-Inertia
spherical harmonics or functions, respectively. Ffanctions, Hyperspherical Harmonies G

which depend on the five hyperanglé€3,, constitute an ] ) ] o
appropriate complete linearly-independent basis set in these 4-1. General Considerations.Since the kinetic energy
variables, in terms of which the local hyperspherical surface OPeratorT of (2.15) is the Hamiltonain of three noninteracting
functions (LHSF), defined in the first paragraph of section 7, Particles (for whichv = 0), its eigenfunctions can be obtained
may be expanded. The coefficients of this expansion will depend analytically, as follows. Let}, 69, andg¢{ (i = 1, 2) be the
only on the hyperradiug. An important property of the space-fixed polar coordinates of the mass-scatacrangement
functions is that they behave regularly at the poles of the kinetic channel Jacobi qoordinateﬁ) introduced in section 2. The
energy operatofi of (2.15) and therefore of the system’s eigenfunctions ofl can be expressed as products of the two
Hamiltonian. They are, in additiop;independent. If they could  ordinary spherical harmonics o) ¢g) times a function of

be obtained analytically, they would constitute a very useful () () These latter two variables can be transformed into the

basis set. In the rest of this paper we show how indeed we canhyperradiusp and the hyperangle;, defined by the relations
obtain an analytical expression for tBdunctions and therefore

for the F functions. It should be noted that the matrix r = psiny, (4.1)
representation of in the F basis set is completely diagonal.
All the Coriolis couplings involvingQ; are automatically rEIZ)ZPCOSnA (4.2)

included in the evaluation of th@ functions. The only matrix
elements that must be evaluated numerically are those of theAt a constantp, the partial differential equation irﬁl), rff) is
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transformed into an ordinary differential equation fgrwhose o1 )

solutions are known hypergeometric functions of?cgs In TA}‘= el z Dﬁp(ai)é(pfl)”lztjp(e) (4.10)
this way the eigenfunctions of2, for a quantum numben, p=-1

become known functions of the five angle8, ¢\ (i = 1, 2),

. . » . wher
andn;. They are, however, not eigenfunctions of the remaining ere

operators of (3.3) through (3.7). One can nevertheless transform P = (_1)1/2 (4.11)
them into functions of the five hyperangl€g and expand them

in the basis seff. This procedure will furnish th& functions k=-1,0,1 j=-1,1 (4.12)
analytically. For many triatomic reactions, the valueslafp

to 30 may be required to obtain state-to-state differential cross '[].i1 =y=sin0 (4.13)
sections of benchmark quality. Since, from (3.8)> J, G

functions up to at leastyy = 40 may be needed in these 0= \/ij — \/éj cosf (4.14)
calculations. For this range aff, (6.7) furnishes approximately !

2.3 million G functions, of which, for symmetry reasons, only k=-1,0,1 j=-1,1 (4.15)

1.2 million have to be evaluated. The manual algebra involved
in this kind of approach cannot be used to obtain such a largeWe can consider the complem{( as midway variables
number of functions. In the rest of this section we derive a between the Cartesian coordinates and the R@HE;. With
recursion relation that is simple enough to be implemented the help of (4.4) through (4.9) we can express the system’s
efficiently using theMathematicacomputer algebra progrén Laplacian in terms of these variables as
and which has generated analytically this large numbe® of
functions. This relation is based on the theory of harmonic ) ik
polynomiald® and the use of complex coordinates. Vi=-4 z Z (-1) T (4.16)

4.2. Complex Coordinates and the Corresponding Hamil- =TL= Iy T3
tonian. Complex coordinates were first used in connection with K . L :
the four-body problem by ZickendraftHe introduced them, ~ Where thed/oT,; partial derivatives with respect to the com-
however, in an ad hoc manner. A rationale for their definition Plex variablesl; ; are defined as in Appendix C of ref 28. This
was reported in our previous papgé(2.4) describes the defining 'S @ pqrtlcularly Slmple expression and vy||| permit us, as seen
relation between the ROHC and the Jacobi mass-scaled spacell Section 4.3, to derive a recursion relation betweerfiiaed
fixed Cartesian coordinates. By expressing the elements of the@ functions for the hyperangular momentum quantum numbers
R matrix on its rhs in terms of Wigner rotation functions, an nandn +1. ) ) )
intermediate set of complex coordinates suggests itself naturally, 4-3- Recursion Relation for Hyperspherical Harmonics.

as was the case for the four-body systems. That expresdfon is L€t us now derive recursion relations for the@ndG functions
of (3.12) associated with consecutive values of the hyperangular

R= momentum quantum numbar We make use of the properties
. of harmonic polynomial&® These properties, for am-dimen-
72(031* D5-) sional space, are summarized in Appendix D. We will now set
P X L1, . § ) I m= 6 (for triatomic systems) and from here on omit this index.
P11+ Diny = Dy = D2y 5034+ Dyy + D2y + D2y 2B+ Do) Let f'(x;) be an arbitrary homogeneous polynomial of degree
Lo, - D'y o+ Dy DL, in the six real variables; = {x{", y{, 2V, X, y{?, 22} . The
V2 V2 associated functioh"(;) defined by (D.5) is therefore a har-
(4.3) monic polynomial satisfying the six-dimensional Laplace
equation

1 2

11 1 1 1 —int 1 1 1
E(Du =Dy =Dy +Doyy) ?(Du =Dy + DIy +D0y )

whereR and theDj, values k, p= —1, 0, 1) are evaluated at -
the same set of Euler angles. Replacement of (4.3) into (2.4) Vhix) =0 (4.17)

leads to the six relations ] o
Let us define a set of functlon‘$f< (x;) by

1 - _
Xfll) - Z(Tﬁ —Tha - T/lil + TA—D (4.4) fjnkﬂ(xz) = Ti}((xz)hn(xi) (4.18)

y__1 TiyT-l_71 _T1-1 4 where thex;(T;) are given by (4.4) through (4.9) with, =
Y5 2Tt T T~ Ty (4.5) (T,75 T2y Ty T T8 T)). Since the T are also
Y 1 0 o homogeneous polynomials of the first degree inxtheompo-
R [_(Tll -T2 (4.6) nents, thef,"(x;) are homogeneous polynomials of degree
i2v2 + 1 in those variables. As a result of (4.14) and (4.15), the

1 _ _ following property can be easily derived:
X = Z(Tﬁ T T T (4.7) » )
—8(—1)"on"/aT,_¢ for s=1
1 - - VA () = o 4.19
yy =2 T+ T + T +T3 (4.8) i (%) 0 for s>1 (%+.19)
z§2) = L(Tﬁ + Tlgl) (4.9) In this expressions is a positive integer. It should be noted
2V2 that the symboloh"/aT, :]k implies that althoughh(x;) is a

harmonic polynomial in the variableg;, it can also be
The complex quantitiesT;, J-k(p,®,1) are defined in view of considered, with the help of (D.5) though (D.13), to be a
(4.10) through (4.14); (4.10) can be rewritten as harmonic polynomial in the variableg ]k
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Replacing (4.17) into tha + 1 counterpart of (D.5), we get

2

hn+l

Thh — ———= VAT, (4.20)

4n+ 2)
This is a recursion relation between the harmonic polynomial
h" and each of the six harmonic polynomials* (k = —1, 0,

1;j = —1, 1), all of which are of degree+ 1. Let us consider
the five-angle hyperspherical harmonids™ """} 2/(©;)
given by (3.12) (withJ, D, andd replaced byJ, D', “andd,
respectively). Since it satisfies (3.3), we conclude from (D.4)
and (D.10) that the functioh™ ™13 ©(0,0,), defined by

Amtn g 2(p.0,) = pF MUY P(0,0,) (4.21)
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of theseF™1L4 are eigenfunctions of? with hyperangular
momentum quantum number+ 1. In addition, because of the
€Lt and Dy, ,ikq, (&) functions that appear on the rhs of

(4.23), the [7”““’ m oo are eigenfunctions of?, 33
and (. Since V2 commutes with32, 35" and L, we conclude,
from (4.21), that so are theF B wdyogn With the
corresponding quantum numbers belhgf\/IJ + k, andL + j.

As a result of this important property, we can omit the bar on
theseF, add a parity indeXI' = IT + 1 mod 2 associated with

n + 1 (sincell is associated witm andL), and Write them
simply as F"""*3, J; 0.4, where the indiced, D', and

d' indicate that they are expressed, through (4. 21) |n terms of
the &7 functions defined by (4.23) and (4.24), which contain
those indices. A superscript(n + 1, J, L) will be attached to
these functions, as well as a modifiedsubscript, and the

is a solution of the Laplace equation, (4.17), and is therefore a subscripts)', D', andd’ will be dropped, after the functions are

harmonic polynomial of degreer in the variablesx; or,
equivalently, the; to which the ROHCp, ©; are related. Let
us use this choice di" on the rhs of (4.19). With the help of
(4.10), (3.12), and the multiplication properties of the Wigner
rotation function€? but dropping the indeXI to avoid confusion
(sinceng + 1 was a different parity thang), we get

hn+l L+j J' +k > (p @/‘L)

J'+1
Py O LMK M, RIFT g
_1|
(4.22)
where
[FnJrl =93 J+k]J 'D'd’
1
[ T ]{p”“ T gdyoal (4.23)

J—-1=<J=J+1 (4.24)
and is independent gf, where

7 nt1lL+jJd _
[7 mylooa =

gLt Z DMJ‘H a, @)Y N1tk J ]J o (4.25)

Qj=-J

[(on+l L+k J (0)]J D

1
z CJ13,Q;, —ppQ,)e g~ 1)”’2th"“
p=-1

oo (4.26)

The C in the last three equations are the ClebsGwordan
coefficients defined by RosE. In addition, the J that
appears as subscripts in those equations is relatetl iy
the triangle inequalities. On the Ihs of (4.21), let us allpw

and k to assume all their possible values, while at the same

time varying M; so as to maintairM; + k constant. This
will generate, forJ > 0, threeh"™* 43/ | 2 Each of them
will be a different linear combination of the same set of three
functions F™™*13, J;0g. in whichd =3 — 1,7, 7 + 1
(The particular casel = 0 can be considered similarly).

required to be linearly independent, as described in section 5.2.
To calculate thev?{ p™i[.7 "3, 11,04} that appears on
the rhs of (4.21), we use fov? the expressmn

VZ=—-"7T(p) _ A (4.27)
h2 4 h2p2

easily derived from (2.15). It is useful to define the functions
[G" 1] 30¢ as the companions of th&T " 1LH] ;5.4 in the
relation

ITI' n+1L+j J —
[F : MJ+k]J’D'd’(®A) -

z DM Sk Q, (az)[GnJrl H e ].] pg(0)(4.28)
Qf=-3

It is now desirable to relate theG[*1];pq above to the
[ ypq Of (4.23), since the latter have already, by (4.26),
been expressed in terms of t@&. This will, as a final result,
generate the desired recursion relation betw&!] ypo.¢ and

G". To relate the G"Y;pq to the [¢'"ypy, it suffices to
replace, in (4.25), its Ihs by (4.26) and, on its rhs, use (4.28).
We then express\2 in terms of the differential operatot®,

3%, 3% andL, as was done in Appendix A, after (A.6), and use
(A.7) through (A.10) together with the orthogonality of the
Wigner rotation functions to obtain the expression

1
=y cr13Q, -
=1 ’

(™, Oy

|

PpPL;) x

(n+ 4)dP 7P — o (€A +
cosd

QJ" P i(p—1)rf2 | Ly
— — (PP Gy +
sind p ( ) do pd
.. 2
ij p 1 d
ZE@IQ +1 do- 1)n/2tp)
25 ( P )(cose cos d d9( )

G”LQJ iy el §+<J' —p—1)x

2
( P 1 —(e‘p 2t p)
cosﬁ cos A db

G" Y - 1d] (4.29)

These relations can be inverted, so as to express each of the

[t +k]JDd as different linear combinations of the

three h”“{L+J v+ a (0)/p™ . Since theh"Jr1 are all harmonic
polynomlals of degrea + 1 in theT; ¥ > we conclude that each

(4.29) relates theG™*-"1 o, Jiod(6) to the G"" % 2(0) and
therefore permits us to get from a complete set @&f
hyperspherical harmonics for a fixedand all possible values
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of the remaining five indices, a similarly complete setG5f!

Wang and Kuppermann

of g™ functions grow very rapidly witm. However, not all of

hyperspherical harmonics. Therefore, this equation constitutesthe resulting G"*l“kj%k]mdv sets (each set scanned by

a recursion relation fo& functions in the index. This recursion
relation has been implemented using i&thematicacomputer
algebra prograr?t In utilizing this recursion relation, we employ
(3.17) to decrease thdathematicaalgebraic effort. With the
help of (4.10), it is shown in Appendix C th&l'" ;, J(6) can
be written as ’

=nLJ

c" L \£]2J1 3(0) — ei(QJ,l—J)JIIZg o, 5(@) (430)

where Q"Lf% 5(6) is real. The symbol (without a bar) is
A . . .
reserved for a normalized version @fgiven by (5.12). As a

result of (3.17), th@ functions forQ;, < 0 are related to those
for Qj > 0 by

=nLJ

9"t g, 4(0) = (1) 40 (43

The corresponding recursion relation gy is given by

1
[gﬂ‘H- L+j \S]QJA(G)]J'D' = z C(J’ 1\]1 sz - p pQJi) X

p=—1
. Q, — p
[ (n+ 4t + col:°,129t'P - _::n 6pp - %%]g” ngfp @
: p
’55,(1,9% —p+1) é - Coi 292% 0" o, b
].554—(1:93i —p-1) é + co:sL 29% 9" Lng—p—l 5"}
(4.32)

It is therefore more convenient to use this real function recursion
relation and (4.30) rather than (4.29) to determine Ge
functions. Equation 4.32 was also programmed Niath-
ematica®! with (4.31) taken into account. To initiate the iteration
procedure, it suffices to have te=J = Q; =L =00
functions. There is only one linearly-independent solution of
(A.21) for this case, and it is a constant, which can be set to
unity. As a resultD = 1 andd = 1, and we can write

=00

g% =1 (4.33)
Alternatively, we may start the iterative procedure from tthe
= 1 functions. TheT/“!< (k=-1,0,1;j = —-1,1) form a
complete set of hyperspherical harmonicstio= 1. With the

help of (4.10) and (3.12), we can identiy ="+ /=1, D=L

pNIH=ttn= L, 270 with T, § and as a resulgt g} with
tP. This results in
“1+111 =1+11 1
9 1179 11Ty (4.34)
g' 51=v2jx (4.35)
=1L J

In this way, theg Q, 5’(6) for all possible], Q, L, D, andd
are known, and thisAstart-up procedure gives the same result

as the one defined by (4.33). The iterative procedure based on

(4.32) is started from either the= 0 orn = 1 G functions
obtained from (4.33) or (4.34) and (4.35), using (4.29). The
indicesJ' appearing in thed"™“**?, 1504(6) can, for a given
J, assume the sets of values given by (4.22) (whichlfer 0

is three sets). This generates a branching tree making the number

S

varying the values of2;,) are linearly-independent, as described
in section 5.2. Before proceeding to the calculation ofghe,

the g must be culled in order to retain only linearly-
independent sets. This is accomplished with the help of a
separate routine, also written Mathematicz! It should also

be noticed that since thg" functions generate thg"! ones,
they are associated witR" and F"1 functions which have
opposite parity. In solving scattering problems, however, matrix
elements of the system’s potential energy function inRtmasis

set will appear. For two such functions of different parity,
those matrix elements vanish. As a result, irexen anch odd
sets ofF functions do not mix in the scattering equations, even
though they are generated by the recursion relation in the mixed
manner just described.

The recursion relations of (4.29) and (4.32) have been
implemented usingvlathematica®® This calculation involves
differentiations of trigopnometric functions éfwith respect to
this angle. AlthougtMathematicacan perform such differentia-
tions, it is not very nimble in simplifying the results by grouping
appropriately terms interrelated by trigonometric identities. To
overcome this difficulty, we used the intermediate variales
andy defined by (4.13) and (4.14). This approach resulted in a
very efficient procedure for generating tlge functions, as
discussed in section 6.1.

5. Normalization and Degeneracy of the
Principal-Axes-of-Inertia Hyperspherical Harmonics F
and g

In this section we describe how complete sets of normalized
linearly-independent hyperspherical harmoi@ndg functions
are obtained.

5.1. Prenormalization of theg Hyperspherical Harmonics.
Theg functions are homogeneous polynomials in the variables
x andy defined in (4.13) and (4.14). The iterative step described
by (4.32), as implemented byMathematicgorogram, generates
the functions

[g"" L ngA]J'D'd'(e) =

n+1
nt1l+ J nt1Ll+j J q
Alpa o, z @5a o,)eXy (5.1)
©ogrel *
g+r=n+1

where thea coefficients are all integers aidis the product of

a rational number and the square root of another rational number.
Those two rational numbers are generated exactly by that
program. These characteristics afand A stem from the
properties of the ClesehGordan coefficients that appear in
(4.32). On purpose, the superscriptand subscript do not

yet appear in (5.1), since those indices refer to the degeneracy
and linear independence properties of /i&! functions, which

will only be imposed in section 5.2. As thg functions are
always used in connection with the associafefiinctions of
(3.12), together with (4.30) any common multiplicative constant
for a set ofg functions for fixedn andJ and spanned b{2;,

can be factored out of the sum in that equation and incorporated
into the associated normalization consthintAs a result, in a
prenormalization of th@ functions, we replace (5.1) by

n+1
=n+1L+jJ _ pht1lL+jJd n+1L+jJ q,
Ie o,1rLa(0) = Bigg o, z (@5 g QJ;)q,x y
Z q,r:l A
g+r=n+1

(5.2)
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where

Bn+l L+j J

n+1L+j J n+1L+jJ
J'D'd’ QJ =Ay /A

J'D'd’ J'D'd" J (53)
The B coefficients are smaller than the correspondingnes
and make the elimination of the linearly-dependent segsof
functions, performed exactly byMathematicgorograns® and
described in section 5.2, more efficient. Asbecomes large
(of the order of 40), efficiency becomes important and justifies
this prenormalization.

5.2. Degeneracy of thé= Hyperspherical Harmonics. As

discussed in the paragraph following (3.11), it is expected that

for a fixed set of quantum numbefs, nr, J, M;, andL there
should be more than orfe function. We label the latter with

the extra degeneracy subscrigit as F"'™"'5, 9, where D

J. Phys. Chem. A, Vol. 107, No. 37, 2008297

TABLE 1: Degeneracy of theF Hyperspherical Harmonics
for ngp = 4

J& |Lp| =4m?** D(40,J,Ln) J& |Lp| =4m+ 22P D(40,J, Ln)
even =40-2J 11-m even =42-—2] 10— m
even <40-—2] 1+J2 even <42-2] J2
odd =42-2] 10— m odd >40— 2] 10— m
odd <42-2) (J—1)/2 odd <40-—2J G+ 21)2

aThe ranges ofl and |Lp| are from O to 40° The quantitym is a
non-negative integer whose values range from 0 to 10.

(5.2) (with obvious changes in notation) and using (5.4) we get

n+1

z (bn+1 L

q.r=1
gtr=n+1

9" g, 4(0) = o, Xy (56)

indicates the total number of these functions and, therefore, whereD = D(n+ 1, J,L). This constitutes a complete ensemble
represents their degeneracy. A detailed discussion of thisof D linearly-independent sets gffunctions forn + 1 (each
degeneracy issue was given previously for the tetraatomic set spanned b§2;,) generated starting with a knowledge of a

systemg?

Let us now consider the functiong” ]JDd(e) gener-
ated by (4.32) (and expressed in the form of (5.2)) witand
L' assuming all sets of values permitted by (4.24) for a giken

1Ly

complete ensemble @ functions forn. When used in (4.30)
and (3.12) they yield a complete set of linearly-independent
functions forn + 1. It should be noticed that, as a consequence
of the ordering of theb vectors described in the paragraph

Since these functions do not yet satisfy the linear-independencefollowing (5.7), thebp matrix will have elements that are much

condition described in the preceding paragraph, the indices

andd on gy T have been temporarily omitted, as dis-

cussed after (S.i). The indekhas instead been replaced, in
(6.2), by the set of subscrips, D' andd’, whered' refers to

the index in the functiog"" 3 3/(6) that appears on the rhs
of (4.32); thisd' differs to the one that will eventually be

attached tog™™"y, §(6). Let b5y be the column vector

whose elements

n+1

n+iL J
(b Do 2,

nt+iL
D d @ By

,')qf )qr (54)

oa @, (@

are spanned by the set of five indic&s,, q, andr such that

gtr=n+1 (5.5)

with g andr being non-negative integers. For each such vector
we calculate the sum of the absolute values of its elements,

and construct the matrix"™1JL whose columns are those

smaller than would be the case if the ordering were random.
This property significantly speeds up the rank-determination
code and generat@sfunctions whose coefficients are smaller
and simpler than they would be otherwise.

A check of the correctness of the degeneracy nurbifey J,
L) obtained by the procedure just described was made as follows.
Avery? derived a general expression for calculating the total
numberN, of linearly-independent hyperspherical harmonics
F for a givenn:

_(@2n+4)(n+ 3)!
No = ni4! 57
This number is related tB(n, J, L) by
n
N, = Zo Z (23 + 1)D(n, J, L) (5.8)
L=-n

where the prime in the sum ovkrindicates that is increased

vectors placed side-by-side in increasing order of that sum. Thisin steps of 2. The largest degeneracy we encountered in our

ordering is important for optimizing the efficiency of the

calculations fom =< 40 wasD(40, 20, 0)= 11. We calculated

procedure that generates the linearly-independent hypersphericalhe values ofD for n < 40 and used (5.8) to obtain the
harmonics. The next step is to contract this matrix to one whose correspondind\,. Perfect agreement was obtained with (5.7).
columns are linearly independent. We adopted the following As an example, a representative set of valued(of J, L) (for

contraction procedure:

1. Consider the matrik; formed by the first two columns of
b and determine its rank?;. If &1 = 1, replace the second
column ofb; by the third column ob. If &2, = 2, augmenb;
by the third column ob. Call the resulting two or three column
matrix by. Its rank &7, is equal to its number of columns.

2. Augmentb, by the next column ob, and proceed as in
step 1 to generate a matrbg having four or five columns
depending on whether’s is four or five.

3. Continue the augmentation procedure, one column at aof all the G""},

time, until the columns ob are exhausted.

The resulting final matridop will have rankD and be formed
by D linearly-independent columns (d = 1, 2, ...,D). The
numberD will depend onn + 1, J, andL only. The rank
determination of the matrixed; is done exactly, with an
availableMathematicaprogram. The elements &b are now
designated by the symbob{™*" {, d)qr Inserting them into

n = 40) is given in Table 1. For example, fdr= 6 andL; =
4mwith m= 0 through 7D = 4. For the entire tabld) ranges
from 1 through 11. Using these results and (5.8), one Ngis
= 259 161. The same value is obtained from (5.7). Taking into
account thalN, varies from 1 fom = 0 to 259 161 fom = 40,
such an agreement is strongly suggestive that the recursion
relations used and the codes written to implement them are
indeed correct. Table 1 is further discussed in section 6.7.
Finally, an uItimate check was performed on the correctness
generated by the procedure described. For
each set of values of, J, L, D, andd, these functions (for all
Q2;,) were replaced on both sides of (A.12) and shown to satisfy
it with the help of aMathematicaprograni® written for this
purpose. This test was done for @lwith n up to 40, which,
as mentioned in section 5.1, amounted to about 2.3 million
functions. Thus, with the correctness of the degeneracy param-
eterD(n, J, L) and of theG hyperspherical harmonics verified
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independently, it is concluded that they are both free of error.
A similar test was performed fay functions with the help of
(A.14).

5.3. Normalization and Orthogonality of the F and g
Hyperspherical Harmonics. It is desirable to normalize the
functions according to

IIngLlyJd
f“: nnM

2©)Pde, =1 (5.9)

where
d®, = sinb, da, db, dc, sin(49) d0 d5,  (5.10)

The ranges of the angles in the integral above are given by (2.7)
through (2.9). TheN" ™71 D of (3.12), if chosen to be real
and positive, should be, taking (4.31) into account,

11 JLp D _
N N Jln 4=
8 . 2 ~1/2
— [gmtny, (e)] sin(40) do
2+1 QJ;
(5.11)
Since the normalization coefficiem' "’ 2 is indepen-

dent ofM;, we can use it to define the modified functigrby

gH N Lo J d(e) NH noJ Lo 5 gl_[ nnLnJ (9) (5 12)
They satisfy a relation analogous to (4.31):
gl_[ nr L J (6) —_ ( 1)J+Ln ITnpp Ly J (0) (5 13)

The magnitudes of these normalizgtlinctions are considerably
smaller than those of the correspondfyunctions, which is a

TABLE 2: Principal-Axes-of-Inertia Hyperspherical
Harmonicsgfor np =1, 2, 3

no J Lo Q‘]Aa gn tn gzl gb nn J Lo Q‘Jia gnn LHJJA Db
11 1 0 2 31 3 1 yx—yy

11 1 1y 32-100

11-1 0 —2 32-1 1 xy

11-1 1 32-1 2 xy

2 0-2 0 x2—y 32 1 00

20 2 0 x®—y? 32 1 1 —xy

21 0 0 O 32 1 2 —xy

21 0 1 xy 3 3-3 0 2¢22+3y)V5
2 2-2 0 V2B@e+y) 3 3-3 1 /3542 +y)
22-2 1 %Xy 33-3 2 \/éxyZ

2 2-2 2 y 33-3 3

22 0 0 —V/23(2¢—y) 3 3-1 0 —2x22—y)I\5
22 010 33-1 1 7y(4x273y2)/\/1_5
22 0 2 y 33-1 2 oy

22 2 0 J2i32¢+y) 33-1 3 ¥

22 2 1 —2xy 33 1 0 2x22—y)Iv5
22 2 2 33 1 1 —yax—3y?)/V/15
31-3 0 \/E(X3*Xy2) 33 1 2 7\/73)(),2
31-3 1 y&—V? 33 1 3

31-1 0 263-3x¢9) 33 3 0 —2x22+3)5
3 1-1 1 -3+ 33 3 1 J3myae+y?)
31 1 0 —\/— (X3 3xy2) 33 3 2 —\/Exyz

31 1 1 —3y+y 33 3 3

31 3 0 —ﬁ(x3—xy2)

aThe Q; < 0 functions are obtained from th;, > 0 functions
using (5.13)° The IT superscript ofg (0 for n even and 1 fomy
odd) was omitted for simplicity.
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Figure 1. Normalized hyperspherical harmonlgéé0 as a func-

tion of the principal angle of inertié, for Qj, from 0 through 2. These
functions are related to the correspondirfgnctions of Table 3 through
(5.12), whereN*°22 = 0,02022885. The symbdla. indicates that the
values ofg were multlplled bya before being plotted. Thél = 0
superscript was omitted from thigesymbol.

convenient property. It is important to stress that the functions
Fiinti 2, which are orthogonal with respect B, i, L, J,

and M;, are not orthogonal with respect t even after
normalized according to (5.9). If desired, they can be orthogo-
nalized with respect to this quantum number by a Gram
Schmidt or some other orthogonalization procedure.

6. Representative Results

6.1. General ConsiderationsWe used the procedure de-
scribed in sections 4 and 5 to generate all the hyperspherical
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TABLE 3: Principal-Axes-of-Inertia Hyperspherical Harmonics g for np = 4

J Ln Q2 g, 1" J Ln Qe gy, 1"

0 4 0 6 — y?)2 3 0 0 0

0 0 0 x4 — 6x%y? + y* 4 4 4 v

1 2 1 Xy = y?) 4 4 3 2/2%y3

1 2 0 0 4 4 2 2y4(6x2 + y)INT

2 4 2 y0¢ = ) 4 4 1 2V/21Txy( 4% + 3y?)

2 4 1 —20(¢ - ¥) 4 4 0 V2I35(8¢ + 24¢2y2 + 3y)
2 4 0 —/2[3(=2x + X3y2 + y) 4 2 4 y

2 2 2 YA(=7% + 3y) 4 2 3 V2

2 2 1 —4xy(x% + y?) 4 2 2 N7

2 2 0 VB(2¢ — 7332 + ) 4 2 1 —/2Txy(4x2 — 3y?)

8 2 s Xy’ 4 2 0 V2135(-8x + 3y

3 2 2 23/213¢y? 4 0 4 v

3 2 1 Xy(4x% + yz)/\/l_S 4 0 3 0

3 2 0 0 4 0 2 P(—22 +y?)

3 0 3 xy? 4 0 1 0

3 0 2 0 4 0 0 V2I35(8¢ — 82y + 3y%)
3 0 1 —Xy(4X2 — y?) \/E

J L Q, g, T J L Qy g0,

2 0 0 V21324 + 90y + ) 2 0 0 V2BE2X + 9y + )
2 0 1 ~70/3y(x2 — y?) 2 0 1 70/y(2 — y?)

2 0 2 yA(— 9 +y?) 2 0 2 YA(—9 + y?)

ab See footnotes of Table 2.

TABLE 4: Principal-Axes-of-Inertia Hyperspherical Harmonics g for np =8,J =4,Lg = 2,andD = 2

Q2 0%, 1° 0%, 2"
0 —V10/Bey/ (23 — y?) V10/7(1126y2 — 8¢ — Bxy* — T4 + 3y)
1 Xy(4x6 — 192 + 16xy* — 3y8)/+/14 V2177432 — 1486 — 678¢y* + 111y5)
2 —2x%y(—2x* + 252 + VAT —2y%(646 + 5x*y2 — 102¢@y* + 5y9)/\/T
3 —xy3(x* — B2 + V)2 V269 — 134xy2 + 37y
4 Xy (2 — y?) yA(5x* — 38x%y2 + 5y

a.bSee footnotes of Table 2.

TABLE 5: Principal-Axes-of-Inertia Hyperspherical Harmonics g for np = 24,J = 7,Lg = 18, andD = 2

Q,° g24 1BZZJZ ib =24 1832% gb
0 0 0
1 17/ 3003y(x% — y?)5(448x10 — 8176¢y? + 35176¢8y* + 1/7/3003y(x2 — y?)5(704x10 — 128488y? + 1478488y* +
22115¢y6 — 15508 + 35y10) 75895¢%y6 — 745028 + 55y10)
2 —/8/100X2y2(x2 — y2)8(528E — 1328¢y2 — —/8/100X2y2(x2 — y2)§(2544E — 129446y2 —
142544 — 11304y + 1658 55573¢%* — 28905 + 795/8)
3 +/=3/100y3(x2 — y?)5(720¢ — 8580<6y2 — +/—1/3003xy3(x2 — y?)§(15280¢ — 1250206y2 —

895y + 82245 — 21y®
SRV — y)S(130¢ + 1211x4%2 + 148@y* — 33y5)/+/91
BxyP(2 — y2)8(660¢ + 991x%y2 — 202¢y* + 7y5)/+/91
63/ 2/Tx2y5(x2 — yA)S(L17x¢ + 6532 — 11y
7 XY’ (2 — y2)5(199K* — 94x2y2 + Ty*)

ab See footnotes of Table 2.

1054834y* + 1111825 — 999)
—8xAA (X2 — yA)§(210¢ — 5853¢%y2 — 704y + 159/0)/v/91
BryP(x2 — y2)%(900K6 + 6003¢%y2 — 726y* + 11y0)//91
23/ 21Tx3y8(x2 — y)S(673¢* + 914x%y2 — 159
Xy’ (% — y2)5(427x* + 38x%y2 + 11y*)

o o1 b~

harmonic functiong"J, 3(6) for nfrom 0 to 40. For each,
3,

the number ofj functions is approximately half thé, of (6.7).
The reason for this decrease is thgtis the number of linearly-

0 to J; the total number ofj functions generated for all those
n was about 1.2 million.

The calculation of those 1.2 million functions was performed
independent™ "3, D™D fynctions. Whereabl; can assume  on a Dell desktop computer operating with a 450 MHz Pentium
all values betweer-J andJ, the values of2;,, although in the Il processor, and it required about 2 weeks of total running time.
same range, can be restricted by (3.22) and (4.30) to the rangeGiven the independence of these functions on the characteristics
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Figure 2. Normalized hyperspherical harmonig®? ng ﬁas a function of the principal angle of inertiafor Q;, from 0 through 4 andl = 1, 2.
Z
N8242 = 09610238, andN®?*3 = 0.01451439. See caption of Figure 1 for additional information.

of the triatomic system for which they will be used, they will for J = 0. The result is
not have to be calculated again, except for obtaining more of
them when needed. They are expressed in the form of (5.6), gt 2701 = cog'"?(20)PO "D (cos ) (6.1)
where theb coefficients have been normalized as described by
(5.3). These coefficients are stored as sets of values for fixed\herep®(cos 4#) is the Jacobi polynomial of degree for
n, J, Qy, L, andd, with the indicesg andr scanning each set. o = 0 andf = Li/2. The quantitymis a non-negative integer,
It should be noted that thesg functions are related to  and givenm andLp, the values ofy are given by
appropriate Jacobi polynomials. We are currently investigating
the details of these relations for general values,df, andJ.

6.2. Comparison with Previous Results.The g""5 1
functions can be obtained analytically by solving (A.12) Furthermorel (and thereforen) is constrained to be even;

Ng =4m+ |Ly] (6.2)
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Figure 3. Normalized hyperspherical harmonig 418;} ﬁ as a function of the principal angle of inertiafor Q;, from 0 through 3 andl = 1,
2.N?1872 = 0.0911482. See caption of Figure 1 for additional information.

that is, thell = 1 (odd),J = 0 g functions vanish. When  parity of I1. Furthermore, the coefficients of these polynomials
transformed into the variablesandy defined by (4.13) and are the products of rational numbers and the sqare roots of
(4.14), (6.1) agreed with the present recursion relation results. rational numbers, as discussed after (5.1).

6.3. Hyperspherical Harmonics for np = 1, 2, 3. The 6.4. Hyperspherical Harmonics forng = 4. Theg functions
principal-axes-of-inertia hyperspherical harmortic®r ng = for np = 4 are presented in Table 3. The valuelDg#, 2, 0) is
1, 2, 3is given in Table 2 fof2;, = 0. TheQ, < 0 functions equal to 2; that is, the correspondifgfunctions are doubly
can be obtained from the latter with the help of (5.13). None of degenerate. This value af; is the smallest one for which we
the associate& functions are degenerate; that3,=d = 1 encountered degeneracies in tReunctions. In view of the
for all entries of this table. As expectd, they are homogeneous symmetry relation (3.17), only three formulas are given. The
polynomials of orden; = 1, 2, and 3 andh; and k. have the corresponding normalization coefficient is calculated using
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Figure 4. Normalized hyperspherical harmonigé'**(, 7 as a function of the principal angle of inertia for Q,, from 4 through 7 andi = 1,
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(5.11). The associategifunctions, defined by (5.12), are plotted considered, confirming the well-behaved nature of the
in Figure 1 as a function of. Although theseg are quartic functions. It is important to notice that although the= 2, d
polynomials inx(6) and y(6), the values ofg“ogZJ 2 only = 1 g functions of the bottom part of Table 3 differ from the
display half an oscillation over the allowed range &f In correspondind = 2, d = 2 functions at most by a sign, they
addition, the ranges of variation of thegeare rather small. It ~ give rise to linearly-independerft functions as a result of

is interesting to analyze their behavior near the special con- (4.28) and (3.12). This can be seen clearly by noticing that
figurations, namely) = 0 and6 = 45°, at which theA? operator ' O M—*t=0F2 072 4 pHEOMALZOS2 072 are two com-
has poles. The shape of all of those five curves is, as expectedpletely different linearly-independent functions.

very smooth and regular, with no unusual behavior, although As noted above, the lowest value of; for which we
they sample geometries close to the special configurationsencountered degeneracy in thdunctions wasyy = 4. Great
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Figure 5. Normalized hyperspherical harmonig® '?¢, T as a function of the principal angle of inertiafor Q, from 0 through 9N*° 129 =
0.00901322. See caption of Figure 1 for additional information.

care has to be taken when using other meth6d2, as this 6.5. Hyperspherical Harmonics forng = 8. As an example

degeneracy was not explicitly obtained in the corresponding of hyperspherical harmonig functions for higheinr, we give
publications. Wolniewic22 however, does carefully discuss this in Table 4 the funCtiOﬂSflszzgJ % The corresponding func-

issue. tions are plotted in Figure 2.'The value o8, 4, 2) is 2, and
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6 /degree

J“ls as a function of the principal angle of inertth for €, from 0 through 7, where

therefore,d can assume the values 1 and 2. Each of these twox(0) andy(6), asnp increases to 24, they do not display pro-
functions has nine nonvanishing terms that are similar, but their nounced oscillations as a function@fThis is due to the limited

coefficients are different. This is a pattern followed in general range of this angle, given by (2.9). As an example, the functions
by degenerate hyperspherical harmonics. As displayed in Figureg
2, a full oscillation over the allowed range 6fis found.

6.6. Hyperspherical Harmonics forng = 24. Even though

IInpLpJd D . .
e o, ¢ are homogeneous polynomials of degngan

theg

24187
QJ

s (the superscriptil is omitted for simplicity) are

given in Table 5 and depicted in Figure 3 @3, = 0—3 and
in Figure 4 forQ; = 4—7. SinceJ + Ly is odd, (3.17) and

(4.31) predict thag

24187 2 __

od

0, which is indeed the case, as
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seen in panels a and e of Figure 3. Even though we found ang = 8 results. This small number of oscillations is a
full oscillation for one of then; = 8 cases, only fewer than  consequence not only of the limited rangefabut also of the
two full oscillations were found fong = 24, whereas three  nature of the associated homogeneous polynomials ié aimd
full oscillations might have been expected on the basis of the cos®é.
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6.7. Hyperspherical Harmonics forng = 40. The degenera-
ciesD(np = 40, J, L) of the hypershperical harmonics obtained
for np = 40 are given in Table 1 and range, as pointed out
after (5.8), from 1 to 11. Theg functions for this value ofiy
are displayed in Figure 5 fdrp = 12,3 = 9 and in Figures 6
and 7 forLp = 20,J = 16. The corresponding degeneracies
are D(40, 9, 12)= 4 andD(40, 16, 20)= 6. Since it is not
practical to display the correspondimgfunctions for all the
values ofd from 1 to 4 or from 1 to 6, respectively, only tle
= 1 harmonics are shown in these figures. Although more
oscillations were found than for lower valuesrf, there are
still relatively few such oscillations for a fortieth order
polynomial in cog) and sinf. The reason for this behavor was
discussed in section 6.6. For the= 9, L = 12 caseJ + Lp
is odd, and thereforegg® *?3 4 = 0, as is seen in Figure 5a.
7. Discussion

Once theg" ™3, & hyperspherical harmonics have been
. A . .

obtained, replacement into (4.30) and (3.12) (or equivalent-
ly, (A.16), (A.15), and (3.21)) furnishes the corresponding

Fiimtn g, 8(©2) hyperspherical harmonics in ROHC. These

can then be used as a basis set for expanding the local

hyperspherical surface functions (LHSP) which by definition
are the simultaneous eigenfunctions of the surface Hamiltonian

AH©)

2

h(©;:0) = + V(0,0.0,) (7.1)

whereV is the potential energy function, and & 35, and®;.
Once that expansion is performed, and the properties of the
Wigner rotation functions appearing in (3.12) or (3.21) are taken
into account, the corresponding coefficients must satisfy, for
eachIT andJ, a generalized eigenvalagigenvector equation
involving matrixes that are independentMj and whose rows
and columns are spanned by the four quantum numbgisy,
D, andd. The calculation of these matrixes involves quadra-
tures over the two variabled; and 6 on which V(p,0;,6),
g™ty § and én’ depend. Since all these functions are
now known and since th¥ andg functions do not vary very
rapidly with 6, and 0, these quadratures can be efficiently
performed using relatively few angular integration points and
for large blocks of integrals simultaneously, so as to minimize
the duplication of numerical operations and thereby optimize
the corresponding computer time.

As all Coriolis terms are incorporated in tigdunctions, all
the couplings in the equations satisfied by the coefficients of
the LHSF expansion are potential function couplings. Further-
more, the equations fofl = 0 (i.e., even values ofij) are
decoupled from those fofl = 1 (i.e., odd values ofi). In
addition, as mentioned at the end of the paragraph following
(3.17),F hyperspherical harmonics férirreducible representa-
tions of the permutation group of identical atoms that the system
of interest may contain can easily be generated. Using such
parity and irreducible representatiérfunctions decreases the
numerical effort required to generate the corresponding LHSF.

Due to the first term on the rhs of (7.1) a hypercentrifugal
potential matrix, diagonal ing, will appear as an additive term

in the matrix whose generalized eigenvalues and eigenvectors

must be evaluated. The diagonal terms of that hypercentrifugal
matrix arenp(nn + 4)A%2up? For a givenJ, (3.8) requires
that np = J. On the other hand, due to the highly repulsive
nature of the hypercentrifugal matrix elements, it is expected
that the rate of convergence of the calculation with respect to

Wang and Kuppermann

n will be high, that is, that values afi; much larger than)
will not be needed.

8. Summary and Conclusions

We have described and implemented a recursive procedure
for generating analytical hyperspherical harmonics for triatomic
systems in row-orthonormal hyperspherical coordinates. These
hyperspherical harmonics are regular at the poles of the
corresponding kinetic energy operator. The implementation of
this procedure was performed withMathematicaalgebraic
program and used to generate all such functions for values of
the grand-canonical hyperangular momentum quantum number
up to 40. About 2.3 million such functions were generated. The
hyperspherical harmonics obtained were shown to be correct
by verifying that they satisfy the appropriate coupled partial
differential equations. The degeneracy of these hyperspherical
harmonics was also calculated, and it achieved a maximum value
of D = 11 forngp = 40,J = 20, andL = 0. These functions
are attractive candidates for benchmark-quality state-to-state
reactive scattering calculations for these systems involving a
ground electronically adiabatic potential energy surface, as long
as this surface does not display a conical intersection with the
neighboring one.

Appendix A. Coupled Partial Differential Equations for
the Principal-Axes-of-Inertia Hyperspherical Harmonics
G

The G'""3, §(6) hyperspherical harmonics have been de-
fined by (3.123. The range of th& angle in these equations
can be taken to be those given by (2.8). The results will be the
same as long as te'' ", ((©;) are the same at the two sets
of (®;); angles defined by (3.15) and (3.16). We will impose
this constraint throughout this paper, and as a result, we are
allowed to use the range of thig given by (3.13) whenever
desired. We will do so in this appendix, since then the functions
gldi that appear in (3.18) are orthogonal. Under these conditions,
the coupled partial differential equations satisfied by the

G''"t5, 4(6) can be obtained by standard methods. To that
effect, we remember that
P=37+ 3 +35 (A1)
and define the operators
=37 i3y (A.2)

where the}, 3, andJ} are given explicitly by (2.20). As a

result, we can expresk/ andf]'yf‘-2 in terms of thel'; as
=24 5n
x =58+ 37 (A.3)
3= 23— 3% (A4)
yoo2ivt v
A2 1,4 A2 1,212 a2
3y =§(JZ—J'Z;.) +Z(J'+A +3%) (A.5)
A2 1,4 A2 1,212 a2
3y =§(JZ—J';.) —Z(J'+A+J'j) (A.6)

We now use (A.1) through (A.6) to express that operator,
and thereforer2, in terms ofJ2, J%, andJ".. We then replace
(3.12) into (3.3), to apply the several angular momentum
operators in the resulting expression to the Wigner rotation
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functions. The effects of these operators on those Wigner analogy to (4.30), we define the real functiagisoy

rotation functions aré

¥D ﬂ,,JQJK(aA) =JJ + 1h’D ﬂ,,JQJZ(aA) (A7)
34D} 0, (8) = Q,1iDy o () (A8)
JiDi, (@) =hE-(12,)Dia =(@)  (A9)

where
£.G.Q) =[i(+1) - QQ+1)]"=

[(1 F Q)+ Q+ 1) (A.10)
with

—=Q=j j = 0, integer (A.11)

Using (A.7) through (A.10) together with the orthogonality of
the Wigner rotation functions, we finally get the following

system of 4 + 1 coupled partial differential equations that must
be satisfied by the&" "™ "g, 7

JO+1)-Q,7 IO+ +2,7 - ij
2 cogH 2 cog 20 sm2 6

o d Mt © 1 1
— —4cotdHh - —n(n+4)[(G "G G0+ -
do? do ( ) 4\co<o

QJZ

1
L2y —
g 2 [£:(3.€,,

£.(QQ, +2E(3Q, +1)GH”HL“

sin 20
I

2)5,(0.Q, — Gy L, 5(0) +
2a (O] =
P Ry DG 114(0) —
§+(J,9Ji — G 14(0)] =0 (A.12)

Q, =-J,-J+1,..3 (A.13)

The corresponding differential equations satisfied by the real

g Lngz D functions defined by (4.30) are
WHD-Q7 I+ DF A" -0 Q)
2 cod 6 2 co$ 26 sin’ 0
d_2 _ d i sllnolnJd Dy 1' 1 —
7 4ot 4 45— nn+4)|g 2,47 " 2\ 02 o

1
!Q -
cog 20] O

£.QQ, +2E(3.Q +1)—“”HLH§2

sin 20
co< 20

2)5,(3Q; — 1" My ,4(0) +
240(0)] +
[£-QQy, + 17"ty L 5(0) +

L14(0)] =0 (A.14)

1

£:0.Q, —1g"ty

whereQ;, spans the values given by (A.13). The differential
equations satisfied by th@' functions defined by (3.21) can
be obtained directly by substituting (3.22) into (A.12). The main
difference will be that the range &2, is now 0 toJ, meaning
that the G' satisfy a system ofl + 1 coupled differential
equations instead of thel 2+ 1 equations satisfied by th&. In

I n L J _ 1(Qy,—)/2 < TI npy Lpp J
G2, B(0) = (1) g B(0)
(A.15)
From (3.22), (4.30), and (A.15) we get
ngnnLn J_Q d(e) (1+6Q O)—l/Z HnnLnJ 3 (0)
(A.16)

Substitution of this expression into (A.14) leads to a system of
J + 1 differential equations for thg that bear the same relation
to the 2 + 1 equations [(A.14)] satisfied by ttgas the one
between theG' and G equations.
It should be noticed that, in (A.12) and (A.14), np, andJ
are fixed, whereas th®;, span the range indicated in (A.13).
The only differential operator appearing in (A.12) and (A.14)
acts on theG" ™™g, 9(0) andg" ™y, G(6), respectively.
A similar statement is applicable to tlﬁﬁlandg counterparts
of these equations. The entire coupling betw&dninctions or
their g counterparts or between ti& and theirg’ counterparts
is completely due to the Coriolis coupling terms associated with
the products of coefficients. Ther" ™3, 3(@;) functions
of (3.12) or (3.21) will be used used to expand the local
hyperspherical surface functions (LHSF), which are, as men-
tioned in section 7, the eigenfunctions of the local hyperspherical
surface operatoh defined by (7.1), as well as P, J5', and
Or. h depends orp only parametrically; that is, it does not
contain differential operators in this variable. The resulting
algebraic equations in the coefficients of this expansion will
not contain any Coriolis coupling terms. The coupling between
these equations is entirely due to the potential energy function.
Finally, we remark that we do not attempt in this paper to
solve either (A.12) or (A.14) or theiG' or g equivalents.
Instead, we derive a recursion relation among @eor g
functions for consecutive values of;, based on the general
properties of harmonic polynomials. We then use this recursion
relation to generate analytically tf& or g functions and then
the correspondings’ or @ functions. TheG or g recursion
relations are slightly simpler than the®' or g counterparts,
which justifies this procedure. (A.12) and (A.14) are however
used to check the correctness of the functions thus obtained.

Appendix B. Relation between the Quantum Numberdl,
Nm, and L

Let us show that the parity quantum numiéy the grand
canonical angular momentum quantum quantum numpesnd
the internal angular momentum quantum numbgrall have
the same parity. The hyperspherical harmdniof ordern is
related to the harmonic polynomial of the same ordé# by

F'(©;) = Hy/p"

whereH, is expressed in terms of the space-fixed Cartesian
coordinates of the mass-scaled Jacobi veatgtandr® as

_ 1)1, (1)72_(1)73, ()4, (2)'5_(2)'6
Ho 00 = 3 xRV
v

(B.1)

(B.2)

with » = (v, ..., vs) and wherey , indicates a sum over all
possible values of the six non-negative integarsonstrained
by the condition

(B.3)
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The polynomial coefficients, in general are complex numbers. Let us consider the functidmdefined by (4.21). We already
The inversion operator acts o according to know that it is a harmonic polynomial of degreein the
. variablesT; Jk and can therefore be written (omitting the primes
Ix, = (=X, —yib), —ZD, —x) 2 72 (B.4) in the indices) as
As a result,

h d(p@o— g 1111 : |“11|“n (Cl)
v v v 21\ V. nk -----
OiH (X)) § ay(_Xﬁ )) 1(_yfl )) 2(_2( )) 3(_X( )) 4w Jadn K

where theC are constant coefficients that may be complex and

(—y2)(=Z?)" each of thgs (s= 1, ...,n) in the first sum assumes the value
- —1 or 1 only. Replacing this relation, as well as (4.10), in (4.21)
=(-1) Hnn(Xi) (B.5) permits us to write the correspondifd! " tn as

_From _(B.l) and (B.S) and the fact thats invariant under the F! o Lo J 3( 0, = h” N L J 5(@»
inversion operation, we have

1

O F™(©,) = (~1)MF™(©,) (B-6) — Ut ; y
. . j1,dn k 1
and, in view of (3.7), we get ' nl
m_ C . |‘|Dl (a)t™(9) (C.2)
(_1) - (_l)ﬂn (B-7) 1Ky ko L KsPs Is

Therefore,n andI1 have the same parity. A
Let us now relate the parity dfl andLy. Applying Oi on
both sides of (3.12) and using (3.2), we get

The products of the Wigner rotation functioBs, (a;) can be
expressed, by successive application of the Cleb&rdan
series® in terms of theDM Q, (a,1) functions and appropriate
J Clebsch-Gordan coefﬂments As a result, we get
OlFH noL;J D(®l) _ NH nm J Lnéan <
Qy=-J

FH no L J D(@ ) _ ILné D (a )GH ng L J D(e)
Diyo, (7 + &, 7 by, w = c)G" ™, 2(6) (B.8) ' Z W =

(C.3)
However, where
DﬁAJQJ}L(ﬂ + a;{, J — b;{, J — C/l) - N N
Q,=3Yp L= Z j (C.4)
J+Q J .,
(—1)"*D w-o, (@ 0;, ¢;) (B.9) % FZ s 4s
Replacing this expression into (B.7) and changing the summa-andG" "' g, ) 3(0) is a linear combination of the products of
tion index from€2;, to —Q;,, we get nntpS(G) functions. In other words, thi€ is a homogeneous
5 ponn0m|aI of degreeny in the six varlablestjp(e) (p =
& Fl1mitnd Dg y — iI M d Liglhas Z o —1,0, 1;j = —1, 1) and therefore of the two real variabes
i M, d\™2 ) andy defined by (4.13) and (4.15). In view of (3. 12) and (C.3),
2= the G''™ L“g 3(0) are proportional taG" ™", 2(6) and,
J—Qj5.~J IInplpJd D
(=1)" PDue, @) G o, a(0) (B.10) as a result, are also homogeneous polynomlals of degrée
x andy, Q.E.D.
With the use of (3.17) this expression becomes Let us now prove that thg" "', 2(6) defined by (4.30)
~1j 1 1

are real. Indeed, we have shown that, fio= 1, all sixg
O;Fmtn) 5(@1) = (—1)-nptt b ) 5(@ ) (11) (G=-1,1;p=—1, 0, 1), given by (4.34) and (4.35), are real.

Furthermore, all the coefficients on the rhs of (4.32), that relates

and, in view of (3.7) and (B.6) the @™ to theg", are real. Therefore, by induction from the
= 1 case, tha@" are real, Q.E.D.

(1" = (Y= (-1 (B.12) . . . .

Appendix D. Harmonic Polynomials and Hyperspherical

that is, I1, nr, andLp indeed have the same parity, Q.E.D. Harmonics

The general theory of harmonic polynomials and hyperspheri-
cal harmonics is of central importance for this paper. We
summarize here the properties that were used in deriving the

Once theF hyperspherical harmonics are explicitly defined basic recursion relations for the principal-axes-of-inertia hy-
by (3.3) through (3.7), th&s hyperspherical harmonics are perspherical harmoni@ functions, defined by (3.18) and given
implicitly defined by (3.12) and (3.17). We now wish to prove by (4.27) and (4.34).
that theses functions are homogeneous polynomials of degree  D.1. Harmonic Polynomials in m-Dimensional Space.

n in the variablesx andy defined by (4.13) and (4.14). This  Consider thkR™ space spanned by= (X1, X2,..., Xm) Where the
property will be very useful in obtaining th@ analytically. x; are real variables each spanning the fudh to +c domain.

Appendix C. G Hyperspherical Harmonics as
Homogeneous Polynomials
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A general homogeneous polynomial of non-negative integer

degreen in RM is defined as

f i) = z Ay XX (D.1)
n

where then; (i = 1 throughm) are non-negative integers. The
sum extends over all such integers subject to the constraint

m

Sn=n

and the.¢ are complex dimensionless constants. A harmonic
polynomial h[‘m)(x) in R™ is a homogeneous polynomial of
degreen in that space which, in addition, satisfies the Laplace
equation

(D.2)

Vo Nim®) =0 (D.3)

wherev(zm) is them-dimensional Laplacian defined by

m 2

2 _
V(m)_Z_Z
i=1 0X;

Given an arbitrary homogeneous polynomia,l,)(x), the as-
sociated functiorh;(x), defined by

(D.4)

(V2)(—1)(m+ 2n — 2k — 4)!!
h?m)(x) = 20
& (2K!N(m+ 2n — 4)!l

pﬁk)(v(zm))kf ?m)(x)
(D.5)

is a harmonic polynomia® where /2] denotes the integer part
of n/2 andp, is the hyperradius, defined by

m

2 __
Pm =

X (D.6)

D.2. Dimensionless Grand-Canonical Generalized Angular
Momentum Operators. This operator is defined B§

mi—1

Ny = —ZZ A (D.7)
iI=1j=
where
s2_ 90 9

From this definition one can easily derive the relation

22

1 0 m1d _"m

——=p
ot om " dpm o,

Vi = (D.9)

The dimensionless?\(zmL is related to the usual hyperangular

momentum operatof\(m) for a system of particles withm-

spatial degrees of freedom by the proportionality consfidnt
Let F i, be the function defined by

h? (%)
(m)
Fim®) = ';

m

(D.10)

where
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Y= Yo 1Y) (D.11)
and
yi=xXlp, (i=12,..m) (D.12)
In view of (D.6)
Z =1 (D.13)

and therefore onlyn — 1 of them dimensionless variables
are independent. On the rhs of (D.11) we chose them arbitrarily
to be the firstm — 1 of these quantities, but any setrof— 1
of them could have been selected. It can easily be sktivat
the F?m) satisfy the partial differential equation
AF O =n+m=2Ff,4)  (D.14)

They are eigenfunctions cﬁ(zm) with eigenvaluen(n + m — 2).
These functions are called hyperspherical harmonics.

D.3. Generalized Hyperspherical CoordinatesLet o. = (a4,
oy, ..., dm—1) be a set oim — 1 angles andji(o) (i = 1, 2, ...,
m) be a set of real functions of these angles subject to the
constraint

m

gl =1 (D.15)

In addition, let the hyperradius, anda be related tox by

X=pn0(@ i=12,..m (D.16)
The anglesx are labeled hyperangles, and tievariablespm
anda are called a set of generalized hyperspherical coordinates
associated withx. As a result of (D.12) and (D.16), we have
yi=g() (i=1,2,..m (D.17)

which permits us to change from the independent variaples
given by (D.11) to the hyperangles Similarly, upon thex to
the pm andy variable transformation, thé(zm) operator defined
by (D.7) and (D.8) is seen to be completely indepenAderptTpf
As a result, (D.14) can be rewritten (changing fro‘rﬁn) to
Aoy = h2AL)) as

NewF (@) = n(n+m—2h*F (o)  (D.18)
and the hyperspherical harmonilégn)(a) are functions of the
hyperangles only. The important property they satisfy is that
they can be generated from hyperspherical polynomials by
multiplication by ()~ ". In the present paper involving tetra-
atomic systems we consider the particular case 6 only.
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